sábado, 11 de febrero de 2012


1.3 ARQUITECTURA Y FUNCIONAMIENTO DE UN SISTEMA EXPERTO
ARQUITECTURA BÁSICA DE LOS SISTEMAS EXPERTOS

Arquitectura de un sistema experto.
La arquitectura de un sistema experto esta basada en una entrada de datos realizada por el usuario a fin de efectuar la oportuna consulta. Las entradas no solamente están compuestas de estas consultas. El aprendizaje del sistema y las condiciones específicas del problema a tratar también han de encontrarse en la entrada.
Junto a ello, se encuentra la administración del sistema, compuesta por un interfaz encargado del manejo de la sintaxis del lenguaje y de la maquina de inferencias, qué se encarga de efectuar la búsqueda en la base de conocimientos y en la base de datos. Por ultimo, se tienen los resultados.
Componentes de un sistema experto
Base de conocimientos. Es la parte del sistema experto que contiene el conocimiento sobre el dominio. Hay que obtener el conocimiento del experto y codificarlo en la base de conocimientos. Una forma clásica de representar el conocimiento en un sistema experto son lar reglas. Una regla es una estructura condicional que relaciona lógicamente la información contenida en la parte del antecedente con otra información contenida en la parte del consecuente.
Base de hechos (Memoria de trabajo). Contiene los hechos sobre un problema que se han descubierto durante una consulta. Durante una consulta con el sistema experto, el usuario introduce la información del problema actual en la base de hechos. El sistema empareja esta información con el conocimiento disponible en la base de conocimientos para deducir nuevos hechos.
Motor de inferencia. El sistema experto modela el proceso de razonamiento humano con un módulo conocido como el motor de inferencia. Dicho motor de inferencia trabaja con la información contenida en la base de conocimientos y la base de hechos para deducir nuevos hechos. Contrasta los hechos particulares de la base de hechos con el conocimiento contenido en la base de conocimientos para obtener conclusiones acerca del problema.
Subsistema de explicación. Una característica de los sistemas expertos es su habilidad para explicar su razonamiento. Usando el módulo del subsistema de explicación, un sistema experto puede proporcionar una explicación al usuario de por qué está haciendo una pregunta y cómo ha llegado a una conclusión. Este módulo proporciona beneficios tanto al diseñador del sistema como al usuario. El diseñador puede usarlo para detectar errores y el usuario se beneficia de la transparencia del sistema.
Interfaz de usuario. La interacción entre un sistema experto y un usuario se realiza en lenguaje natural. También es altamente interactiva y sigue el patrón de la conversación entre seres humanos. Para conducir este proceso de manera aceptable para el usuario es especialmente importante el diseño del interfaz de usuario. Un requerimiento básico del interfaz es la habilidad de hacer preguntas. Para obtener información fiable del usuario hay que poner especial cuidado en el diseño de las cuestiones. Esto puede requerir diseñar el interfaz usando menús o gráficos.




1.2 Fundamentos Históricos
Sus inicios datan a mediados de los años sesenta. Durante esta década los investigadores Alan Newell y Herbert Simon desarrollaron un programa llamado  GPS (General Problem Solver; solucionador general de problemas). Podía trabajar con criptoaritmética, con las torres de Hanoi y con otros problemas similares. Lo que no podía hacer el GPS era resolver problemas del mundo real, tales como un diagnóstico médico.

Algunos investigadores decidieron entonces cambiar por completo el enfoque del problema restringiendo su ambición a un dominio específico e intentando simular el razonamiento de un experto humano. En vez de dedicarse a computarizar la inteligencia general, se centraron en dominios de conocimiento muy concretos. De esta manera nacieron los SE.

A partir de 1965, un equipo dirigido por Edward Feigenbaum, comenzó a desarrollar SE utilizando bases de conocimiento definidas minuciosamente. Dos años más tarde se construye DENDRAL, el cual es considerado como el primer SE. La ficción de dicho SE era identificar estructuras químicas moleculares a partir de su análisis espectrográfico.

En la década de los setenta se desarrolló MYCIN para consulta y diagnóstico de infecciones de la sangre. Este sistema introdujo nuevas características: utilización de conocimiento impreciso para razonar y posibilidad de explicar el proceso de razonamiento. Lo más importante es que funcionaba de manera correcta, dando conclusiones análogas a las que un ser humano daría tras largos años de experiencia. En MYCIN aparecen claramente diferenciados motor de inferencia y base de conocimientos. Al separar esas dos partes, se puede considerar el motor de inferencias aisladamente. Esto da como resultado un sistema vacío o shell (concha). Así surgió EMYCIN (MYCIN Esencial) con el que se construyó SACON, utilizado para estructuras de ingeniería, PUFF para estudiar la función pulmonar y GUIDON para elegir tratamientos terapéuticos.

En esa época se desarrollaron también: HERSAY, que intentaba identificar la palabra hablada, y PROSPECTOR, utilizado para hallar yacimientos de minerales.

De este último derivó el shell KAS (Knowledge Adquisition System).

En la década de los ochenta se ponen de moda los SE, numerosas empresas de alta tecnología investigan en este área de la inteligencia artificial, desarrollando SE para su comercialización. Se llega a la conclusión de que el éxito de un SE depende casi exclusivamente de la calidad de su base de conocimiento. El inconveniente es que codificar la pericia de un experto humano puede resultar difícil, largo y laborioso.

Un ejemplo de SE moderno es CASHVALUE, que evalúa proyectos de inversión y VATIA, que asesora acerca del impuesto sobre el valor añadido o IVA.

fuente:
http://www.gestiopolis.com/canales2/gerencia/1/sisexp.htm

Tema 1 Introducción  a los sistemas expertos.
1.1 DEL RAZONAMIENTO A LOS SISTEMAS EXPERTOS

El razonamiento es el conjunto de actividades mentales que consiste en la conexión de ideas de acuerdo a ciertas reglas y que darán apoyo o justificarán una idea. En otras palabras más simples, el razonamiento es la facultad humana que permite resolver problemas.
Un sistema experto es un conjunto de programas que, sobre una base de conocimientos, posee información de uno o más expertos en un área específica. Se puede entender como una rama de la inteligencia artificial, donde el poder de resolución de un problema en un programa de computadora viene del conocimiento de un dominio específico. Estos sistemas imitan las actividades de un humano para resolver problemas de distinta índole (no necesariamente tiene que ser de inteligencia artificial). También se dice que un Sistema Experto se basa en el conocimiento declarativo (hechos sobre objetos, situaciones) y el conocimiento de control (información sobre el seguimiento de una acción).
Para que un sistema experto sea herramienta efectiva, los usuarios deben interactuar de una forma fácil, reuniendo dos capacidades para poder cumplirlo:
  1. Explicar sus razonamientos o base del conocimiento: los sistemas expertos se deben realizar siguiendo ciertas reglas o pasos comprensibles de manera que se pueda generar la explicación para cada una de estas reglas, que a la vez se basan en hechos.
  2. Adquisición de nuevos conocimientos o integrador del sistema: son mecanismos de razonamiento que sirven para modificar los conocimientos anteriores. Sobre la base de lo anterior se puede decir que los sistemas expertos son el producto de investigaciones en el campo de la inteligencia artificial ya que ésta no intenta sustituir a los expertos humanos, sino que se desea ayudarlos a realizar con más rapidez y eficacia todas las tareas que realiza.
fuentes: